Sederhanakan:
.
[tex] \sf1). - \frac{12xy}{3x} \times \frac{2 {y}^{2} }{3 {x}^{2}y } = [/tex]
.
[tex] \sf \: 2). \: \frac{ ( - 3xyz)}{4z} \times \frac{5y}{( - 4 {x}^{3} {z}^{2}) } [/tex]
.
[tex] \sf1). - \frac{12xy}{3x} \times \frac{2 {y}^{2} }{3 {x}^{2}y } = [/tex]
.
[tex] \sf \: 2). \: \frac{ ( - 3xyz)}{4z} \times \frac{5y}{( - 4 {x}^{3} {z}^{2}) } [/tex]
Jawaban:
ada di foto
Penjelasan dengan langkah-langkah:
semoga membantu
Penjelasan dengan langkah-langkah:
Eksponen, Aljabar
Nomor (1)
= (-12xy/3x) x (2y²/3x²y)
= (-12x2)(xy³)/(3x3)(x³y)
= (-24)(x¹-³)(y³-¹)/9
= (-24/9)(x^-2)(y²)
= (-8/3)(x^-2)(y²)
= -8y²/3x²
Nomor (2)
= (-3xyz)/4z x 5y/(-4x³z²)
= (-3/4)(x)(y)(z¹-¹) x 5y/(-4x³z²)
= (-3x5)xy²/4(-4x³z²)
= (-15)xy²/(-16x³z²)
= (-15)/(-16) x¹-³. y²/z²
= 15/16 x^-2 y²/z²
= 15y²/16x²z²
= 15y²/(4²x²z²)
= 15y²/(4xz)² .
[answer.2.content]